Steklotorgnn.ru

Строительный журнал
81 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Гидрокомпенсатор для водоснабжения

Защита от гидроударов системы домашнего отопления и водоснабжения

В последнее время все чаще появляются сообщения о разрушении некоторых элементов системы отопления или водопровода. Причина поломки — гидроудар. Спасает от подобных неприятностей компенсатор (гаситель) гидроудара. Что это за устройство такое, как и где его устанавливать — читайте в этой статье.

Что такое гидроудар в трубопроводе, причины возникновения

Гидроудар — это резкое повышение давления в системах транспортирующих жидкость, которое возникает при резком изменении скорости движения жидкости. Скачок давления может стать причиной разрушения некоторых элементов системы. Разрушения происходят, если превышен предел прочности соединения или материала.

Если говорить о наших домах и квартирах, гидроудары возникают в системах отопления и водоснабжения. В системах отопления частных домов — при старте или остановке циркуляционного насоса. Да, сам по себе он давления не создает. Но резкое ускорение или останов теплоносителя и является той нагрузкой, которая действует на стенки труб и близлежащие устройства. В системах отопления закрытого типа стоит расширительный бак. Он компенсирует гидроудар, если насос находится рядом. В этом случае дополнительные устройства могут и не понадобиться. Проверить необходимость установки компенсатора можно по манометру. Если стрелка не движется или движется едва заметно, все нормально.

Наиболее распространенная причина появления гидроудара — резкое закрытие крана

В централизованных системах отопления, гидроудар возникает при резком закрытии заслонки, когда быстро открывают краны для заполнения системы после ремонта/профилактики. По правилам надо делать это медленно и постепенно, но на практике случается иначе…

В водоснабжении гидроудар возникает даже при резком закрытии крана или другой запорной арматуры. Более выраженные «эффекты» получаем в завоздушенных системах. Вода при движении ударяется в воздушные пробки, что создает дополнительные ударные нагрузки. Мы можем при этом слышать щелчки или потрескивание. А если водопровод разведен пластиковыми трубами, во время эксплуатации можно заметить, как эти трубы сотрясаются. Так они реагируют на гидроудары. Вы, наверное, замечали, как дергается шланг в металлической оплетке. Причина та же — скачки давления. Рано или поздно они приведут к тому, что либо труба лопнет в самом слабом месте, либо соединение потечет (что более вероятно и чаще встречается).

Гидроудар может нанести серьезный ущерб

Почему же раньше это явление не отмечалось? Потому что сейчас большая часть кранов имеют шаровую заслонку и поток перекрывается/открывается очень резко. Раньше краны были вентильного типа и заслонка опускалась медленно и постепенно.

Как же бороться с гидроударами в отоплении и водоснабжении? Можно, конечно, приучить обитателей квартиры или дома не крутить резко краны. Но стиральную или посудомоечную машину не научишь бережному отношению к трубам. И циркуляционный насос не замедлишь в процессе старта и останова. Поэтому в систему отопления или водоснабжения добавляют компенсаторы гидроударов. Их же называют гасителями, амортизаторами.

Что такое компенсатор гидроудара: виды, конструкция, принцип работы

Компенсатор гидроудара есть двух типов: мембранный и с подпружиненным клапаном. Они выполняют одну и ту же функцию: принимают излишки жидкости, снижая тем самым нагрузку на другие элементы системы. Так как эти устройства имеют небольшие размеры, защищают они те приборы, которые расположены в непосредственной близости.

Компенсатор гидроудара — небольшое устройство, но картину меняет значительно

Как устроен и работает мембранный компенсатор

Мембранный компенсатор гидроудара — это емкость, которую делит на две части эластичная мембрана. Одна из частей заполнена воздухом, вторая, в нормальном состоянии пуста. Воздух в заполненной части закачивается под определенным давлением. Для проверки/подкачки давления в этой части корпуса имеется золотник (ниппель). С завода изделия поставляются с исходным давлением в 3 Бар. Это «стандартное» значение для большинства систем отопления одноэтажных частных домов. Если давление требуется изменить, к ниппелю подсоединяют насос и доводят его до требуемого значения. Это значение — на 20-30% выше рабочего в конкретной системе. Но оно должно быть значительно ниже предела работоспособности самого компенсатора.

Мембранный амортизатор гидравлических ударов в системах отопления и водоснабжения

Пока давление в системе не превышает давление в этой части резервуара, ничего не происходит. При возникновении гидроудара, под действием возросшего давления мембрана растягивается, часть жидкости поступает в резервуар. По мере нормализации, эластичная мембрана стремиться занять свое нормальное состояние, выталкивая жидкость обратно в систему. Тем самым скачок сглаживается.

Особенности пружинного гасителя гидроудара

Второй тип компенсаторов гидроударов работает по тому же принципу: в корпус при повышении давления пропускается жидкость. Вот только доступ в емкость перекрывает пластиковый диск, который подпирается пружиной. Давление, при котором жидкость начинает поступать внутрь, зависит от силы упругости пружины. Регулировать его никак нельзя (во всяком случае пока регулируемые модели не попадались), так что приходится подбирать устройство с подходящими параметрами.

Устройство компенсатора гидроудара пружинного/тарельчатого типа

Принцип работы этого гасителя аналогичен вышеописанному. Пока давление в системе в норме, пружина прижимает диск к корпусу. При возникновении гидроудара, она сжимается, вода заходит в корпус. По мере понижения давления, оно становится меньше, чем сила упругости пружины. Она постепенно разжимается, возвращая жидкость в трубопровод.

Как видите, оба устройства работают по схожему принципу. Более надежными принято считать пружинные модели, так как рабочие элементы в них меньше подвержены износу (металлическая пружина и прочный пластик). Но мембраны также делаются из материалов, которые длительное время не теряют своей эластичности. Дополнительный плюс — возможность выставить давление, при котором мембрана начнет растягиваться. Но минусом можно считать необходимость регулярной проверки давления и, при необходимости, подкачки.

Где и как устанавливать: рекомендации по монтажу

Компенсатор гидроударов имеет небольшие размеры, в корпус может поместиться лишь небольшое количество воды (менее 200 мл обычно). Устанавливается он в непосредственной близости перед источником появления гидроудара: шаровым краном, водяной гребенкой, на шланге к стиральной или посудомоечной машине, после циркуляционного насоса, на гребенке теплого пола.

Компенсатор гидроударов устанавливается вблизи от потребителей или на гребенке

Крепить его можно в любом положении: вверх, вниз, в сторону. Для мембранных моделей только важно, чтобы был свободный доступ к ниппелю. Независимо от конструкции, не рекомендуется ставить устройство на длинных отводках от магистрали. Подводящий отрезок трубы должен быть максимально коротким.

Правила монтажа компенсатора гидравлического удара

При выборе обратите внимание на максимальное рабочее и компенсируемое давление. Второй момент — диаметр подключения. Обычно это 1/2 дюйма, но есть и на 3/4 и дюймовые.

При подключении стиральной и/или посудомоечной машины на шланг устанавливается тройник. Один свободный выход тройника идет на машину, на второй устанавливают компенсатор гидроудара.

Другие способы борьбы с гидроударом

Один из возможных вариантов нейтрализации гидроудара уже озвучивали — краны закрывать плавно. Но это не панацея, да и неудобно в наше стремительное время. И есть еще бытовая техника, ее не научишь. Хотя, некоторые производители учитывают этот момент, и последние модели делают с клапаном, который плавно перекрывает воду. Вот поэтому компенсаторы и нейтрализаторы становятся так популярны.

Компенсатор гидроудара — небольшое устройство (сравнение с латунным шаровым краном)

Бороться с гидроударом можно и другими методами:

  • При разводке или реконструкции водопровода или отопления, перед источником гидроудара вставлять кусок эластичной трубы. Это армированный термостойкий каучук или пластика PPS. Длинна эластичной вставки — 20-40 см. Чем длиннее труба, тем длиннее вставка.
  • Покупка бытовой техники и запорно-регулирующей арматуры с плавным ходом клапана. Если говорить об отоплении, часто наблюдаются проблемы с теплым водным полом. Не все сервомоторы работают плавно при закрытии потока. Выход — ставить термостаты/терморегуляторы с плавным ходом поршня.
  • Использовать насосы с плавным пуском и остановом.

Так выглядят устройства защиты от гидроударов в системах отопления и водоснабжения

Гидроудар — действительно опасная для закрытой системы вещь. Он ломает радиаторы, разрывает трубы. Чтобы избежать проблем, лучше продумать меры борьбы заранее. Если все уже работает, но появились проблемы, разумнее и проще всего установить компенсаторы. Да, они недешевы, но ремонт обойдется дороже.

Производители, характеристики, цены

Лучше всего компенсатор гидроудара покупать известных фирм. Это не тот участок, где уместно экономить. Наибольшей популярностью пользуется несколько фирм:

  • FAR. Компенсатор этой фирмы — без мембраны, с пружиной и запорным диском. Подсоединительная резьба 1/2″, максимальное давление 50 Бар, номинальное — 10 Бар. Температуру выдерживает до 100°C. Цена от 30 $.
  • Uni Fitt. Та же конструкция с подпружиненным диском. Есть два варианта корпуса: латунный и латунный с никелевым покрытием. Подключение 1/2 дюйма. Максимальная температура 90°C, номинальное давление — 10 Бар, пиковое — 20 Бар. Длинна защищаемого трубопровода — 10 м. Цена от 15 $.

Одни и те же модели в разных магазинах продаются по разной цене

  • Valtec (Валтек). Это гаситель гидроударов мембранного типа. Есть модели с подключенным через небольшой шаровой кран с манометром. При необходимости, открываем шаровый кран, проверяем давление в компенсаторе. Давление в камере 3,5 Бар, максимальное рабоче давление 10 Бар, максимальное компенсируемое — 20 Бар. Цена от 25$.
  • CALEFFI (Калеффи). Эта фирма выпускает тарельчатые компенсаторы. Есть они обычные — с подключением 1/2 дюйма, есть под мойку 3/8″. Параметры можно назвать хорошими: рабочее давление не более 10 Бар, компенсировать могут до 40 Бар (под мойку до 30 Бар).
  • Есть и другие фирмы, но они не так популярны. некоторый из-за слишком завышенной цены, другие не завоевали доверие. Во всяком случае, пока.

    Природа гидроудара в системах водоснабжения и отопления + методы защиты от него

    По статистике около 60% всех разрушений (прорывов) трубопроводов возникают из-за гидроудара, который представляет собой кратковременный, резкий и значительный скачок давления в трубе, возникающий в результате внезапного изменения скорости потока жидкости. Обычные признаки, сопровождающие эту серьезную неприятность – щелчки, стук и прочий шум, который возникает в коммуникациях, снабжающих нас водой и теплом. Многие даже не обращают на них внимания, а ведь гидроудар в системе водоснабжения приводит к повреждению оборудования, появлению трещин, расколу труб. Предотвратить аварийную ситуацию поможет четкое соблюдение правил эксплуатации трубопроводов и проведение модернизации инженерных сетей.

    Природа гидроудара, возможные причины

    Владельцы частных домов с неграмотно устроенными инженерными коммуникациями часто слышат характерное пощелкивание и стук, которые сигнализируют о том, что в замкнутой системе произошло кратковременное резкое повышение давления в результате внезапного прекращения движения жидкости по контуру или внезапного возобновления ее циркуляции.

    Когда поток жидкости, двигающийся с определенной скоростью, сталкивается с преградой (воздухом или запорной арматурой), скорость его меняется не сразу, а вот объем быстро увеличивается, давление растет и иногда достигает 10 и более атмосфер. Если «излишкам» деваться некуда, то возникает риск разрыва трубы.

    Возможные причины гидроудара:

    • запуск, остановка и поломка насоса или его аварийное отключение;
    • воздух в системе;
    • резкая остановка потока жидкости в контуре, вызванная быстрым открытием-закрытием запорной арматуры: кранов, задвижек и т.д.

    Последняя причина наиболее типична с тех самых пор, как вентильные краны, с их плавным ходом, заменили более современные и «резкие» шаровые собратья.

    С точки зрения профилактики гидроудара вентильные краны эффективнее шаровых

    В случае если из системы не выведен воздух, то при открытии шарового крана происходит столкновение воздушной массы и практически несжимаемой жидкости, в итоге значение давления может возрасти до нескольких десятков атмосфер. Такая регулярная «проверка на прочность» очень негативно сказывается на состоянии системы в целом и труб в частности, итог предсказать нетрудно.

    Заводушенность системы отопления — нередкая проблема. О том, как спускать воздух из батарей, узнаете в нашей статье: https://aqua-rmnt.com/uchebnik/oborudovanie/kran-maevskogo.html.

    Неприятные последствия и методы защиты от гидроудара

    Барьер, неожиданно возникающий на пути потока жидкости, формирует давление, которое, теоретически, может расти бесконечно. При этом жесткие элементы системы испытывают сильнейшие нагрузки и постепенно или резко разрушаются.

    Последствия гидроудара могут быть плачевными, особенно для старых трубопроводов

    Аварии, которые вызывает гидроудар в системе отопления, сопровождаются рядом характерных неприятностей:

    • разрушением трубопроводов и оборудования тепловых сетей;
    • разрывом отопительных приборов;
    • ожоговым травматизмом;
    • длительным прекращением тепло- и водоснабжения;
    • затоплением жилища и порчей имущества.

    Наиболее уязвимы для гидравлических ударов длинные трубопроводы, например, теплый пол. Чтобы обезопасить «подпольную» систему, ее оснащают термостатическим клапаном, установку которого нужно доверить хорошим специалистам, иначе появится еще один фактор риска в системе.

    Грамотная защита систем отопления или водоснабжения от гидроударов направлена на снижение их интенсивности и нейтрализацию воздействия избыточного давления.

    Без резких движений

    Самый простой способ обезопасить себя от гидроудара – плавное включение и выключение запорной арматуры. Этот нюанс четко прописан в нормативах по эксплуатации объектов централизованного водоснабжения и теплосетей. Правило без каких-либо оговорок можно распространить и на автономные сети.

    Суть в том, что плавное включение и отключение растягивают во времени процесс повышения давления. Энергия гидроудара действует не всей своей силой за раз, а распределяется на несколько временных отрезков. При этом, хоть суммарная сила удара и остается прежней, но мощность уменьшается.

    Вариант с использованием автоматики

    Плавный запуск и остановку инженерной системы можно вполне доверить автоматике. Насосы с автоматической регулировкой оборотов электродвигателя плавно поднимают давление в трубах после запуска, и так же планомерно действуют в обратном порядке. Программное оборудование не просто отслеживает изменение давления, но и совершает автоматическую регулировку напора.

    Наилучший эффект дает комплексная модернизация системы, которая поможет предотвратить гидроудар в трубах. Она включает в себя ряд различных мероприятий.

    Компенсаторы гидроудара, демпферы, гидроаккумуляторы

    Важным элементом в системах отопления и водоснабжения является компенсатор гидроудара (он же демпфер, он же гидроаккумулятор) – устройство, которое выполняет сразу три важных задачи: накапливает (аккумулирует) жидкость; принимает избыток жидкости из системы, тем самым способствует снижению давления в ней; соответственно, способствует гашению гидроудара, если он возникает.

    Компенсатор гидроудара (демпфер) устанавливают в самых «опасных» местах

    Компенсатор представляет собой герметичный стальной бак с эластичной мембраной и встроенным воздушным клапаном. Объем может быть как совершенно незначительным, так и довольно большим.

    Интересно! В Европе, если в сети не установлен гидрокомпенсатор, гарантия на бытовую технику, например, стиральную машинку, бойлер или посудомоечную машину, не выдается.

    Клапан защиты от гидроудара

    Для защиты насосной станции, в случае внезапной остановки насоса, например, применяют специальный клапан защиты от гидроудара диафрагменного типа с жестким уплотнителем. Он приводится в действие давлением жидкости и имеет очень полезную функцию быстрого сброса давления. Устанавливают его после обратного клапана, на отводе от трубопровода, рядом с насосом.

    Клапан защиты от гидроудара имеет очень полезную функцию быстрого сброса давления

    Клапан является надежным предохранителем в системах, находящихся под давлением.

    Установка амортизирующего устройства

    Установка амортизирующего устройства (трубы из пластика или термостойкого каучука) по направлению циркуляции жидкости, перед термостатом, является эффективным методом защиты. Эластичный материал самопроизвольно гасит энергию гидроудара. Достаточная длина – 20-30 см, для очень длинного трубопровода амортизатор можно увеличить на 10 см.

    Шунтирование в домашних условиях

    Тот, кто хорошо знаком с конструкцией термостата, может установить в терморегулирующем клапане шунт с просветом 0,4 мм или просто проделать отверстие такого же диаметра. При нормальном режиме работы, подобное нововведение никак не отразится на системе, а вот при перегрузках плавно снизит давление.

    Важно! Шунтирование как метод защиты от гидроудара применим лишь к автономным сетям с новыми трубами. Осадок и ржавчина центральных коммуникаций делают его совершенно неэффективным.

    Термостат с суперзащитой

    Иногда применяют термостат со спецзащитой от гидроудара. Подобные устройства имеют пружинный механизм, установленный между клапаном и термоголовкой. При избыточном давлении пружина срабатывает и не позволяет клапану полностью закрыться, как только мощность гидроудара снижается, клапан плавно закрывается. Устанавливают такой термостат строго по направлению стрелки на корпусе.

    Гидроудар в системах водо- и теплоснабжения – явление довольно частое и опасное, но существует немало способов, с помощью которых можно нейтрализовать неприятные последствия этого явления и продлить срок жизни бытовой техники и труб.

    Гасители гидроударов

    При резком закрытии и открытии запорной арматуры увеличивается вероятность возникновения гидравлических ударов, которые негативно влияют на все оборудование сетей отопления и водоснабжения. Для гашения скачкообразных перепадов давления, возникающих из-за изменения скорости транспортируемой среды, используют компенсаторы гидроударов. Они предотвращают повреждения квартирных и магистральных трубопроводов, сохраняя установленные рабочие параметры инженерных систем.

    По своему устройству и описанию принципа действия гаситель гидроударов для внутреннего водопровода и отопления напоминает расширительный мембранный бак. Состоит из герметичного корпуса из латуни и диафрагмы из полиацеталя. Уменьшение избыточного давления осуществляется с помощью воздушной камеры и пружины, которые обеспечивают компенсацию изменений параметров рабочей среды. Герметичность конструкции достигнута уплотнением из эластичного каучука и паронитовым прокладкам.

    Гидрокомпенсаторы для водоснабжения и отопления могут устанавливаться горизонтально и вертикально на коллекторах или концах трубопровода, ближайших к потребителю. Они надежно предохраняют от гидроударов и позволяют избежать:

    сокращения срока службы и повреждения коммуникаций, особенно из полимерных и многослойных труб;

    выдавливание прокладок и уплотнителей смесителей, поршневых редукторов давления, соединительных элементов и шаровых кранов;

    повреждения контрольно-измерительных приборов;

    кавитации и нарушения герметичности.

    Максимальная эффективность достигается при монтаже перед арматурой, которая нуждается в защите.

    Компенсатор гидроударов во внутренних системах водоснабжения FAR

    —>

    НаименованиеРазмерРозничная цена, руб.Цена со скидкой, руб.
    Компенсатор гидроударов во внутренних системах водоснабжения FAR FA 2895 121/2″

    Полный прайс-лист на клапаны FAR в формате Excel вы можете скачать здесь.

    Явление «гидроудара» возникает в случае внезапного открытия или закрытия оборудования (привода смесительного крана, насоса и т. п.), которое приводит к появлению избыточного давления в системе. Компенсатор гидроударов FAR принимает «на себя» избыточное давление, сохраняя нормальные рабочие параметры для компонентов системы. Также его задачей является значительное снижение шума от вибрации, которая возникает в результате закрытия потребителя воды.

    Характеристики

    • Присоединение — НР 1/2″;
    • Максимальное давление — 50 бар;
    • Номинальное давление — 10 бар;
    • Максимальная рабочая температура — 100°C.

    Конструкция

    1. Верхняя часть корпуса — латунь CW617N;
    2. Пружина — AISI 302;
    3. Уплотнительное кольцо — EPDM;
    4. Диск — пластик;
    5. Нижняя часть корпуса — латунь CW617N;
    6. Зажимное кольцо — латунь CW614N;
    7. Уплотнение — EPDM.

    Принцип работы

    Уменьшение избыточного давления происходит посредством воздушной камеры и стальной пружины, соединенной с пластиковым диском, имеющим двойное уплотнение, которые поглощают большую часть избыточного давления.

    В открытом положении потребителя давление в трубопроводе остается постоянным.

    При закрытии потребителя давление в трубопроводе увеличивается, и компенсатор гидроударов FAR поглощает избыточное давление, обеспечивая защиту компонентов системы.

    Компенсатор гидроударов рекомендуется устанавливать на конце трубопровода к потребителям (шаровые краны, сантехнические приборы, моторизованные клапаны и т. п.) или на коллекторах.

    Пример установки компенсатора гидроударов на коллекторах Multifar.

    Пример установки компенсатора гидроударов к потребителю.

    Компенсатор гидроударов может быть установлен вертикально или горизонтально.

    Устанавливая компенсатор гидроударов необходимо убедиться, что его расположение не создает областей, где может происходить застой воды, который приводит к размножению бактерий. Например, следует избегать установки компенсатора в верхней части стояка.

    Зачем закруглён стояк горячей воды: правда о гидроударах и пластиковых трубах

    Жители новостроек, принимая квартиры, с удивлением обнаруживают «бублики» — петли на пластиковых стояках горячей воды под потолком. Одни просто прячут за гипсокартонный короб, другие требуют объяснений. Зачем труба закруглена? Так застройщик пытается застраховать жильцов от разрыва труб. Удалять бублики нельзя, но можно заменить более эстетичным вариантом.

    Что такое гидроудар и почему его боятся

    Гидроудар — резкий и очень сильный скачок давления в трубах. Способен разорвать соединения и сами трубы, сорвать вентили и устроить потоп. Небольшие гидроудары действуют постепенно, раз за разом выдавливая прокладки, медленно, но верно деформируя и уничтожая микротравмами трубы водоснабжения и отопления.

    Внешне слабые гидроудары распознаются как вибрация по трубе, гул, хлопки, щелчки или другие посторонние звуки, которые особенно раздражают жильцов, чьи соседи встают раньше или ложатся позже.

    Как возникает гидроудар?

    Это явление, когда в одном участке трубы вода уже остановилась, а сзади на неё напирают продолжающие течь массы:

    • при резком перекрытии водотока;
    • при резком запуске насоса.

    В системе отопления гидроудар провоцируют воздушные пробки.

    Факторы риска

    От чего зависит сила гидроудара:

    1. От того, насколько резко произошёл запор или запуск водотока.
    2. Объёма воды в трубах и, соответственно, их размера.
    3. Скорости движения жидкости и её напора.
    4. Материала труб.

    Формула
    Частота ударной волны = 2 длины трубы / скорость распространения удара в конкретном материале.

    Скорость волны в пластике — 300—500 м/с. Для сравнения, в стали — 900—1300, а в чугуне 1000—1200 м/с. Из этого следует, что в пластике удар будет сильнее, а вот чугунные подводки фактически гасят гидроудар.

    Что происходит с трубой?

    Ничего хорошего: её распирает вширь, в длину она укорачивается. Под напором труба вполне может лопнуть. Чаще страдают смесители и соединительные колена: швы расходятся, прокладки смещаются или разрываются, начинается течь.

    Из воспоминаний слесаря
    Я вот третий десяток в сантехническом мире, но видел по-настоящему гидроудар только один раз (1994 г.) в элеваторном узле . Гидроудар — это когда стрелка улетает в одну секунду с 8 bar до 60.

    Страшнее всего гидроудар в элеваторном узле, у насосной станции и других общедомовых коммуникациях. В гораздо меньшей степени колебаниям подвержены трубы в квартирах, однако стоит понимать, что сечение современных стояков уже (напор, соответственно, выше), чем у советских стальных, а материал более мобилен и менее вынослив. Прежде всего, опасность представляют горячие стояки — под нагревом материалы расширяются сильнее.

    Меры защиты

    Чтобы избежать разрывов, в подвалах на все стояки, а в квартирах на горячие ставят специальные устройства, которые не дают колебаниям уничтожить трубы.

    Блокирующие устройства, их плюсы и минусы

    Амортизирующие подводки — это изогнутые волной, петлёй или п-образно трубы из обычного или специального материала, например, армированного пластика или каучука длиной 20—40 см, самый простой и дешёвый вариант.

    Амортизирующие подводки дёшевы, при этом вполне выдерживают тот гидроудар, который на практике приходится испытывать пластиковым коммуникациям в квартире, не требуют спецобслуживания или периодической замены деталей.

    Сильфонный амортизатор — гофрированная труба из пластичного металла, способная компенсировать линейное расширение, удлинение или оба явления сразу, более простые — однослойные, более совершенные — заключённые в кожух, дающий дополнительную амортизацию.

    Сильфонные амортизаторы в кожухе также неприхотливы, при этом более эстетичны, чем предыдущий вариант.

    Важно
    Именно амортизаторы-подводки (особенно петельные загибы) и сильфоны рассчитаны на то, чтобы компенсировать удлинение стояка, это их основная функция, а погашение гидроудара, скорее, вторичное. Для пластиковых труб, особенно не очень качественного материала, они так же важны, как и компенсаторы.

    Шунты — металлические трубки, которые вставляются в трубу вместе через основной клапан в направлении тока воды и стравливающие лишний объём воды за клапан, малоэффективны в старых, забитых ржавчиной трубах, больше подходят для пластиковых коммуникаций.

    Шунты просты в установке, не требуют размыкать трубу, но теряют эффективность пропорционально засорению трубы, а в бытовом контуре этот показатель может быть достаточно высоким.

    Мембранные компенсаторы (самые распространённые — Valtec) — устройства, напоминающие шар или бак и представляющие собой полость с эластичной мембраной, которая вдавливается при резком повышении напора воды, а затем постепенно расправляется, возвращая воду в ток, но уже без ударной силы.

    Мембранные компенсаторы держат до 30 бар, и это довольно хороший показатель. Их уязвимое место — эластичная мембрана, которая со временем деформируется, рвётся или твердеет из-за солей и присадок в воде.

    Поршневые, или пружинные (самый популярный сегодня — FAR) — устройства, похожие на колпак и работающие по тому же принципу, что и мембранные, с той разницей, что мембрану заменяет пружина: при увеличении объёма вода выталкивает в полость пластиковый диск и тем самым сжимает пружину, затем механизм возвращается в исходное положение, возвращая воду в контур.

    Поршневые компенсаторы выдерживают скачки до 50 бар и способы защитить от настоящего, не слабого гидроудара. К тому же они более устойчивы к износу, чем мембранные, однако и они не застрахованы от протечек в местах уплотнения или соединения с трубой, поэтому нуждаются в периодической проверке и замене.

    Регулирующие клапаны — системы, которые обычно входят в комплексную защиту от гидроудара и устанавливаются на контроллерах внешних и общедомовых контуров.

    Система байпас — труба-перемычка, которая позволяет перенаправить ток водного теплоносителя с тем, чтобы избежать гидроудара и разрывов в батареях.

    Мнение специалистов
    Слесари старой школы считают установку внутриквартирных гасителей пустой тратой сил и средств. По их замечанию, сильный гидроудар грозит водоподготовительным каналам в подвале, и только. Другие мастера отмечают, что в прежние времена все краны закрывались медленно, вентилем, теперь же они в основном рычажные (шаровые), и бытовая техника (стиральные, посудомоечные машины) и бачки унитаза также перекрывают ток воды достаточно резко. Поэтому в идеале гаситель должен стоять перед каждым таким потребителем.

    Комплексные меры профилактики:

    • плавное закрывание кранов и клапанов;
    • регулятор мощности насоса, который замедляет его на первых оборотах и не даёт спровоцировать ударную волну.

    Собственно, к гасителям гидроудара всегда относились «змеевики» — волнообразный изгиб стояка горячей воды, отведённый в ванную комнату из туалета. Хозяйки использовали его как полотенцесушитель. По сути же труба замедляла ток воды и снимала колебания, снижая риск гидроудара. Тем не менее, на стыке квартир довольно часто появлялась течь, особенно с годами.

    Металл быстрее стареет, чем качественный пластик, установка шаровых кранов существенно повысила нагрузку на конструкцию, да и разница в материалах, когда сверху поставили пластик, а снизу оставили металл или наоборот, даёт о себе знать. Из-за этого «змеевики» не срабатывают.

    Как установить

    Журнал «Мисс Чистота» настоятельно рекомендует доверить любые работы с трубами, особенно со стояками специалистам. Они проведут установку качественно и быстро.

    • амортизатор устанавливается на определённой длине трубы (например, под потолком каждого нечётного этажа);
    • лучший вариант — когда компенсатор стоит перед вентилем, краном, клапаном бытовой техники, кранов и др. потребителями;
    • допустимо также располагать компенсатор после отводов коллектора (т. е. после обратных клапанов) в квартире (см. ниже фото из блога С. Савицкого «Идеи для ремонта»);
    • если размещается редуктор, компенсатор следует после него;
    • компенсатор обязательно располагается непосредственно на трубе или на угловом переходе, а не на её тупиковом отводке (см. фото ниже);
    • шунт устанавливается строго по направлению тока воды;
    • регулятор или клапан ставится у контроллера и подключается к нему.

    Хорошо, разобрались с трубами и стояками. А что делать, если в доме стоит электрический накопительный водонагреватель или газовая «колонка»? Первые, как правило, оборудованы собственными защитными клапанами. В случае же «колонки» или любого другого проточного водонагревателя компенсатор нужно размещать после агрегата — это продлит жизнь его шлангам и сальникам.

    Виды компенсаторов для трубопровода, для чего нужны устройства: Обзор +Видео

    Компенсаторы для трубопроводов. Компенсаторы для трубопроводов помогают поддерживать водопроводные сети в рабочем состоянии. В сложных климатических условиях на трубы ложится большая нагрузка во время отопительного сезона, при высокой температуре трубы подвержены расширению, что может служить причиной для аварий на теплотрассах.

    Что предотвратить возникновение чрезвычайных ситуаций применяют специальные устройства.

    Для чего служат компенсаторы

    Работа теплосетей проходит под воздействием температурных перепадов и изменения давления внутри системы. Данные условия считаются опасными для ее функционирования. Применение компенсаторов разрешает эту проблему, сглаживая влияние негативных факторов на деятельность труб. Перепады температуры, давления заставляют материалы труб сжиматься или расширяться, что влечет деформацию и повреждения трубопровода. Компенсатор, как защита, не позволяют выйти из строя водопроводной системе.

    Возможные объемы нагрузки следует рассчитать, разрабатывая проект теплотрассы и водопровода. Соблюдая правила, можно монтировать элементы, способные компенсировать изменения труб.

    Устройства для компенсации бывают из разных материалов, необходимо выбирать подходящий материал для данной системы. Правильно принятое решение в отношении компенсаторов повысит срок эксплуатации системы без аварий. Компенсаторы, как и трубы, бывают из разных материалов: стальные, пластиковые.

    Внимание! Монтировать защитные устройства следуют во все типы водопроводов, проложенные из любого материала.

    Современные системы водоснабжения прокладывают в основном из полипропиленового материала, который подвержен высокой линейной деформации при температурном расширении. Трубы из данного материала всегда оснащают компенсаторами.

    Устройства монтируют:

    • во время прокладки водопроводной системы.
    • во время монтажа теплого пола.
    • в канализационной системе.
    • в отопительной системе, в водопроводе с горячей водой.

    Чем грозит расширение труб

    Если не учитывать возможность расширения труб во время повышения температуры, то во время нагрева элементы трубопровода уходят в стороны и становятся не прямые, а в виде волн. Это влечет повышение уровня шумов во время протекания жидкости.

    Деформация труб приводит:

    • К разрушению крепежных опор.
    • К тому, что снижается пропускная способность, потому что воздух скапливается в верхних частях трубопровода.
    • К падению у отопительных радиаторов температуры.
    • В участках с изгибами появляются трещины, что влечет к протечкам.

    Применяя устройства, обеспечивается:

    1. Бесперебойная работы системы в течение долгого времени.
    2. Поддержание в трубах во время его изменений.
    3. Гидроударная защита.
    4. Исключение деформации во время перепадов температуры.

    Виды устройств для компенсации

    Широкий спектр изделий разрешает выбрать изделия, исходя из типа трубопровода и особенностей монтажа системы. Компенсаторы, устраняющие деформацию труб, бывают естественными либо в виде конструкций, выполненных с помощью упругих материалов. Естественный вид подразумевает использование особого свойство трубы – амортизацию.

    Естественные устройства бывают:

    • Г-образные, которые применяют на поворотах системы.
    • П-образные, которые применяют для трубопроводов отопительной системы и горячего водоснабжения, выдерживают температуру свыше 50 градусов. До установки изделие растягивают для увеличения предельных размеров компенсации.
    • Z-образные служат, чтобы монтировать отведение.
    • Кольцевые конструкции отличаются высокими показателями компенсаций.

    Самыми технологическими считаются:

    • Сильфонные устройства служат для защиты во время гидроударов, во время расширения трубы при изменении температуры, от разных вибраций. Изделия отличаются по виду, бывают: сдвиговыми, осевыми и поворотными, и универсальными.
    • Компенсатор осевого типа применяется для отопительных систем и прокладки водопровода с горячей водой. Изделие выполнено из стальной нержавейки, противостоят давлению шестнадцать атмосфер, когда температура достигает 115 градусов. Сдвиговые имеют две гофры, работают сразу в двух направлениях.

    Поворотные компенсаторы устанавливают на поворотных участках до 90 градусов. Универсальные изделия устанавливают на трубопроводных участках небольшой длины, имеющие отводы. Способны компенсировать все виды смещений в местах, где невозможно применить другие типы устройств.

    Вид компенсатора для полипропиленового трубопровода

    Защитное устройство выполнено в виде петли, имеет простую конструкцию, поэтому легко монтируется в трубы для отопления. Компенсаторы подходят для любых типов трубопроводной системы. Петлевидный предохранитель справляется с последствиями гидроударов, с резкими скачками температуры. В целом данный тип устройства обеспечивает бесперебойной работой отопительную систему и горячий водопровод.

    Внимание! Во время строительных работ теплосети требуют обязательно устанавливать компенсаторы.

    Кроме компенсации линейной деформации отопительной системы компенсаторы нейтрализуют действие работы насосов. Данная вибрация никак не ощущается, но ее влияние ощутимо на всю сеть. Опасным считается, когда частота вибрирования насоса совпадет с частотой вибрации трубопроводной системы. Амплитуда колебания конструкции может увеличиться в несколько раз и полностью разрушить сеть.

    Особенности монтажа компенсирующих устройств

    Оснащение компенсаторами отопительной системы и водопроводов в жилых сооружениях проводят согласно проекту. Компенсаторы закрепляют к основной конструкции при помощи сварки.

    Устройства устанавливают при неработающей системе трубопровода, когда в ней нет давления и транспортируемой жидкости. При установке обеспечивают соблюдение соосности трубы и компенсатора, чтобы не допустить радиальные нагрузки системы во время работы.

    Наличие данного типа нагрузок влечет за собой заедание и дальнейшей поломкой подвижных элементов изделия.

    Система топления оснащается компенсаторами на прямых отрезках трубопровода, и когда все секции прикреплены к неподвижным опорам. Наряду неподвижных опор необходима установка скользящих, чтобы не деформировать трубопровод во время теплого расширения. Необходимо учитывать величину трения в местах установки во время расчета максимального размера зоны трубопровода со встроенным компенсатором.

    Внимание! На участке, где установлен сильфонный компенсатор, нельзя монтировать опоры, подвесной конструкции.

    На этапе создания проекта для установки опор неподвижного типа учитывается: величина силы жесткости компенсатора, величина усилия на распор, сила трения для опор скользящих.

    Монтировать компенсирующие устройства можно в трубопроводах горизонтального и вертикального типа. Стрелка устройства устанавливается по направлению движения теплоносителя, стрелка корпуса вертикальных трубопроводов должна быть опущена вниз, каким бы направлением не был оснащен теплоноситель. При поломке компенсаторы подлежат только замене.

    Квартирный гаситель гидравлических ударов

    Общие сведения о гидравлическом ударе

    Гидравлический удар – это скачкообразное изменение давление жидкости, протекающей в напорном трубопроводе, возникающее при резком изменении скорости потока. В более развернутом смысле, гидравлический удар представляет собой быстротечное чередование «скачков» и «провалов» давления, сопровождающееся деформацией жидкости и стенок трубы, а также акустическим эффектом, похожим на удар молотком по стальной трубе. При слабых гидравлических ударах звук проявляется в виде «металлических» щелчков, однако даже при таких, казалось бы, незначительных ударах давление в трубопроводе может возрастать весьма значительно.

    Стадии гидравлического удара можно проиллюстрироват ь на следующем примере (рис.1): пусть на конце квартирного трубопровода, присоединенного к домовому стояку, установлен однорычажный кран или смеситель (именно такие смесители позволяют относительно быстро перекрывать поток).

    Рис.1. Стадии гидравлического удара

    При перекрытии крана происходят следующие процессы:

    1. Пока кран открыт, жидкость движется по квартирному трубопроводу со скоростью «ν ». При этом в стояке и квартирном трубопроводе давление одинаковое (p).
    2. При перекрытии крана и резком торможении потока кинетическая энергия потока переходит в работу деформации стенок трубы и жидкости. Стенки трубы растягиваются, а жидкость сжимается, что ведет к увеличению давления на величинуΔp (ударное давление). Зона, в которой произошло увеличение давления называется зоной сжатия ударной волной, а ее крайнее сечение называется фронтом ударной волны. Фронт ударной волны распространяется в сторону стояка со скоростью «с». Здесь хотелось бы отметить, что допущение о несжимаемости воды, принимаемое при гидравлических расчетах, в данном случае не применяется, т.к. реальная вода – сжимаемая жидкость, имеющая коэффициент объемного сжатия 4,9х10 -10 1/Па. То есть при давлении 20 400 бар (2040 МПа) объем воды уменьшается в два раза.
    3. Когда фронт ударной волны дойдет до стояка, вся жидкость в квартирном трубопроводе окажется сжатой, а стенки квартирного трубопровода – растянутыми.
    4. Объем жидкости в домовой системе гораздо больше, чем в квартирной разводке, поэтому, когда фронт ударной волны доходит до стояка, избыточное давление жидкости большей частью сглаживается за счет расширения сечения и включения в работу общего объема жидкости в домовой системе. Давление в квартирном трубопроводе начинает выравниваться со стояковым давлением. Но при этом квартирный трубопровод за счет упругости материала стенок восстанавливает свое первоначальное сечение, сжимая жидкость и выдавливая ее в стояк. Зона снятия деформации со стенок трубопровода распространяется к крану со скоростью «с».
    5. В момент, когда давление в квартирном трубопроводе будет равно первоначальному, также как и скорость жидкости, направление потока будет обратное («нулевая точка»).
    6. Теперь жидкость в трубопроводе со скоростью «ν » стремится «оторваться» от крана. Возникает «зона разряжения ударной волны». В этой зоне скорость потока нулевая, а давление жидкости становится ниже первоначального, что приводит к сжатию стенок трубы (уменьшению диаметра). Фронт зоны разряжения передвигается к стояку со скоростью «с». При значительной первоначальной скорости потока разряжение в трубе может привести к снижению давления ниже атмосферного, а также к нарушению неразрывности потока (кавитации). В этом случае в трубопроводе около крана появляется кавитационный пузырь, схлопывание которого приводит к тому, что давление жидкости в зоне отраженной ударной волны становится больше, чем этот же показатель в прямой ударной волне.
    7. При достижении фронта сжатия ударной волны стояка скорость потока в квартирном трубопроводе нулевая, а давление жидкости – ниже первоначального и ниже, чем давление в стояке. Стенки трубопровода сжаты.
    8. Перепад давлений между жидкостью в стояке и квартирном трубопроводе вызывает поступление жидкости в квартирный трубопровод и выравниванию давлений до первоначального значения. В связи с этим стенки трубы также начинают приобретать первоначальные очертания. Так образовывается отраженная ударная волна, и циклы снова повторяются до полного угасания. При этом промежуток времени, в течение которого проходят все стадии и циклы гидравлического удара, не превышает, как правило, 0,001–0,06 с. Количество циклов может быть различным и зависит от характеристик системы.

    На рис. 2 стадии гидравлического удара показаны в графическом виде.

    Рис. 2. Графики изменения давления при гидравлическом ударе.

    График на рис. 2а показывает развитие гидравлического удара, когда давление жидкости в зоне разряжения ударной волны не падает ниже атмосферного (линия 0).

    График на рис. 2б отображает ударную волну, зона разряжения которой находится ниже атмосферного давления, но гидравлическая сплошность среды не нарушается. В этом случае давление жидкости в зоне разряжения ниже атмосферного, но эффект кавитации не наблюдается.

    График на рис .2в отображает случай, когда нарушается гидравлическая неразрывность потока, то есть образуется кавитационная зона, последующее схлопывание которой приводит к возрастанию давления в отраженной ударной волне.

    Разновидности гидравлических ударов и основные расчетные положения

    В зависимости от скорости, с которой происходит закрытие запорного органа на трубопроводе, гидравлический удар может быть «прямым» и непрямым». «Прямым» называется удар, при котором перекрытие потока происходит за время меньшее, чем период удара, то есть выполняется условие:

    где Т3 – время закрытия запорного органа, с; L – длина трубопровода от запорного устройства до точки, в которой поддерживается постоянное давление (в квартире – до стояка), м; с – скорость ударной волны, м/с.

    В противном случае гидравлический удар называется непрямым. При непрямом ударе скачок давления значительно меньше по величине, так как часть энергии потока демпфируется частичной утечкой через запорный орган.

    В зависимости от степени перекрытия потока гидравлический удар может быть полным и неполным. Полным является удар, при котором запорный орган полностью перекрывает поток. Если же этого не происходит, то есть часть потока продолжает протекать через запорный орган, то гидравлический удар будет неполным. В этом случае расчетной скоростью для определения величины гидравлического удара станет разница скоростей потока до и после перекрытия. Величину повышения давления при прямом полном гидравлическом ударе можно определить по формуле Н.Е. Жуковского (в западной технической литературе формула приписывается Alievi и Michaud):

    Δp = ρ · ν · c, Па,

    где ρ – плотность транспортируемой жидкости, кг/м 3 ; ν – скорость транспортируемой жидкости до момента внезапного торможения, м/с; с – скорость распространения ударной волны, м/с.

    В свою очередь скорость распространения ударной волны с определяется по формуле:

    , м/c,

    где c — скорость распространения звука в жидкости (для воды – 1425 м/с, для других жидкостей можно принимать по табл. 1); D – диаметр трубопровода, м; δ – толщина стенки трубы, м; Еж – объемный модуль упругости жидкости (можно принимать по табл. 2), Па; Ест – модуль упругости материала стенок трубы, Па (можно принимать по табл. 3).

    Читать еще:  Схема разводки сантехники в квартире
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector